


# CO-B4 Carbon Monoxide Sensor 4-Electrode



Figure 1 CO-B4 Schematic Diagram

**PATENTED** 



| PERFORMANCE | Sensitivity         | nA/ppm at 2ppm CO                                     | 420 to 650  |
|-------------|---------------------|-------------------------------------------------------|-------------|
|             | Response time       | t <sub>90</sub> (s) from zero to 10ppm CO             | < 25        |
|             | Zero current        | nA in zero air at 20°C                                | +30 to -130 |
|             | Noise*              | ±2 standard deviations (ppb equivalent)               | 4           |
|             | Range               | ppm limit of performance warranty                     | 1000        |
|             | Linearity           | ppb CO error at full scale, linear at zero, 500ppm CO | 20 to 35    |
|             | Overgas limit       | maximum ppm for stable response to gas pulse          | 2000        |
|             | * Tostod with Alpha | seance ISB low noise circuit                          |             |

| restea with | Aiphasense | 12D 10M | noise | Circuit |
|-------------|------------|---------|-------|---------|
|             |            |         |       |         |

| LIFETIME | Zero drift        | ppb equivalent change/year in lab air                 | < ±100 |
|----------|-------------------|-------------------------------------------------------|--------|
|          | Sensitivity drift | % change/year in lab air, monthly test                | < 10   |
|          | Operating life    | months until 50% original signal (24 month warranted) | > 36   |

| <b>ENVIRONMENTAL</b> | Sensitivity @ -20°C | (% output @ -20°C/output @ 20°C) @ 5ppm CO | 40 to 70    |
|----------------------|---------------------|--------------------------------------------|-------------|
|                      | Sensitivity @ 50°C  | (% output @ 50°C/output @ 20°C) @ 5ppm CO  | 110 to 125  |
|                      | Zero @ -20°C        | nA                                         | -30 to +30  |
|                      | Zero @ 50°C         | nA                                         | -50 to -200 |

## **CROSS SENSITIVITY**

| Filter capacity              | ppm·hrs          |        | $H_2S$                 | 250,000 |
|------------------------------|------------------|--------|------------------------|---------|
| H <sub>2</sub> S sensitivity | % measured gas @ | 5ppm   | $H_2^{-}S$             | < 1     |
| NO <sub>2</sub> sensitivity  | % measured gas @ | 5ppm   | $NO_2$                 | < 1     |
| Cl <sub>2</sub> sensitivity  | % measured gas @ | 5ppm   | Cl <sub>2</sub>        | < 1     |
| NO sensitivity               | % measured gas @ | 5ppm   | NŌ                     | < -3    |
| SO <sub>2</sub> sensitivity  | % measured gas @ | 5ppm   | SO <sub>2</sub>        | < 0.1   |
| H <sub>2</sub> sensitivity   | % measured gas @ | 100ppm | H <sub>2</sub> at 20°C | < 10    |
| $C_2^-H_4$ sensitivity       | % measured gas @ | 100ppm | $C_2^-H_4$             | < 1     |
| NH <sub>3</sub> sensitivity  | % measured gas @ | 20ppm  | NH <sub>3</sub>        | < 0.1   |
|                              |                  |        |                        |         |

| KEY                   | Temperature range | °C                                        | -30 to 50 |
|-----------------------|-------------------|-------------------------------------------|-----------|
| <b>SPECIFICATIONS</b> | Pressure range    | kPa                                       | 80 to 120 |
|                       | Humidity range    | % rh continuous                           | 15 to 90  |
|                       | Storage period    | months @ 3 to 20°C (stored in sealed pot) | 6         |
|                       | Load resistor     | $\Omega$ (ISB circuit is recommended)     | 33 to 100 |
|                       | Weight            | g                                         | < 13      |



At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

**NOTE:** all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.





# **CO-B4 Performance Data**

## **Figure 2 Sensitivity Temperature Dependence**

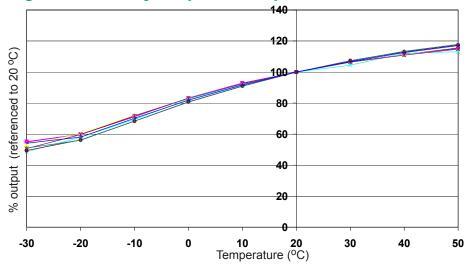



Figure 2 shows the temperature dependence o sensitivity at 2ppm CO.

This data is taken from a typical batch of sensors.

## Figure 3 Zero Current Temperature Dependence (corrected)

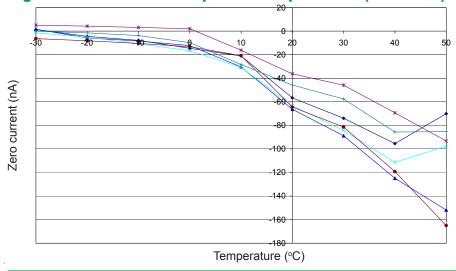



Figure 3 shows the variation ir zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futher information on zero current correction.

### Figure 4 Response to 0 to 1ppm CO

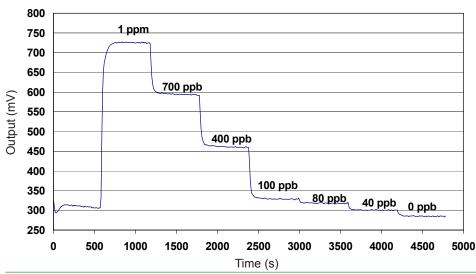
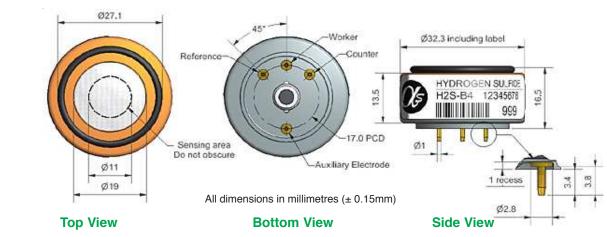



Figure 4 shows response from 0 to 1ppm CO.

Use of Alphasense ISB circui reduces noise to 4ppb, with the opportunity of digita smooting to reduce noise even further

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contac Alphasense Ltd. For Application Notes visit "www.alphasense.com".




**Technical** 

# H2S-B4 Hydrogen Sulfide Sensor 4-Electrode



## Figure 1 H2S-B4 Schematic Diagram



| PERFORMANCE           | Sensitivity Response time Zero current Noise* Range Linearity Overgas limit * Tested with Alpha                                                                                                      | nA/ppm at 2ppm H <sub>2</sub> S t <sub>90</sub> (s) from zero to 2ppm H <sub>2</sub> S nA in zero air at 20°C ±2 standard deviations (ppb equivalent) ppm H <sub>2</sub> S limit of performance warranty ppb error at full scale, linear at zero and 40ppm H <sub>2</sub> S maximum ppm for stable response to gas pulse asense ISB low noise circuit | 1450 to 2150<br>< 58<br>-250 to 200<br>100<br>< ±4<br>200    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| LIFETIME              | Zero drift<br>Sensitivity drift<br>Operating life                                                                                                                                                    | ppb equivalent change/year in lab air<br>% change/year in lab air, monthly test<br>months until 50% original signal (24 month warranted)                                                                                                                                                                                                              | < ±10(<br>< 2(<br>> 24                                       |
| ENVIRONMENTAL         |                                                                                                                                                                                                      | C (% output @ -20°C/output @ 20°C) @ 2ppm H <sub>2</sub> S<br>C (% output @ 50°C/output @ 20°C) @ 2ppm H <sub>2</sub> S<br>nA change from 20°C<br>nA change from 20°C                                                                                                                                                                                 | 77 to 9(<br>100 to 11(<br>50 to 6(<br>-120 to -16(           |
| CROSS<br>SENSITIVITY  | Cl <sub>2</sub> sensitivity % NO sensitivity % SO <sub>2</sub> sensitivity % CO sensitivity % H <sub>2</sub> sensitivity % C <sub>2</sub> H <sub>4</sub> sensitivity % NH <sub>3</sub> sensitivity % | measured gas @ 5ppm NO <sub>2</sub> measured gas @ 5ppm Cl <sub>2</sub> measured gas @ 5ppm NO measured gas @ 5ppm SO <sub>2</sub> measured gas @ 5ppm CO measured gas @ 100ppm H <sub>2</sub> measured gas @ 100ppm C <sub>2</sub> H <sub>4</sub> measured gas @ 20ppm NH <sub>3</sub> measured gas @ 5% CO <sub>2</sub>                             | <-1( <-1; <-1; <-1; <-2( <-0; <-0.; <-0.                     |
| KEY<br>SPECIFICATIONS | Temperature range<br>Pressure range<br>Humidity range<br>Storage period<br>Load resistor<br>Weight                                                                                                   | e°C<br>kPa<br>% rh<br>months @ 3 to 20°C (stored in sealed pot)<br>Ω (ISB circuit is recommended)<br>g                                                                                                                                                                                                                                                | -30 to 50<br>80 to 120<br>15 to 90<br>(<br>33 to 100<br>< 10 |



At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

**NOTE:** all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, th information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements



**Technical** 

# **H2S-B4 Performance Data**

## Figure 2 Sensitivity Temperature Dependence

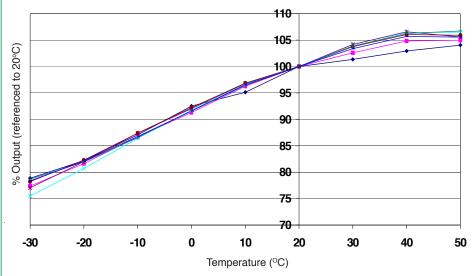



Figure 2 shows the temperatur dependence of sensitivity a 2ppm H<sub>2</sub>S.

This data is taken from a typical batch of sensors.

## Figure 3 Zero Temperature Dependence

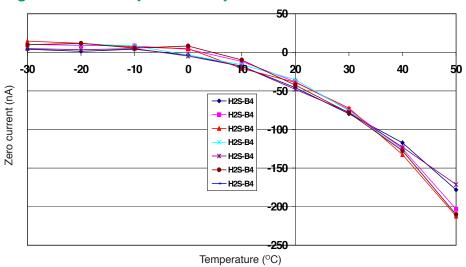



Figure 3 shows the variation i zero output of the workin electrode caused by changes i temperature, expressed as n.f.

This data is taken from a typical batch of sensors.

Contact Alphasense for futhe information on zero currer correction.

## Figure 4 Linearity to 200 ppb H<sub>2</sub>S

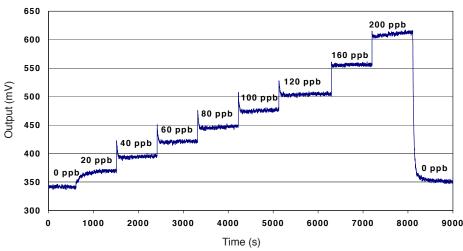
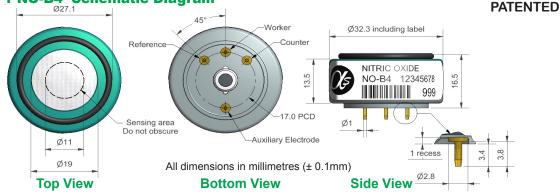



Figure 4 shows response t 200ppb H<sub>2</sub>S.

Use of Alphasense ISB circu reduces noise to 1ppb, with th opportunity of digital smootin to reduce noise even further

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in the document is for auidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information.




**Technica** 

# **NO-B4 Nitric Oxide Sensor** 4-Electrode



## Figure 1 NO-B4 Schematic Diagram



### **PERFORMANCE**

| Sensitivity   | nA/ppm at 2ppm NO                                   | 500 to 850 |
|---------------|-----------------------------------------------------|------------|
| Response time | t <sub>90</sub> (s) from zero to 2ppm NO            | < 4!       |
| Zero current  | nA in zero air at 20°C                              | 30 to 140  |
| Noise*        | ±2 standard deviations (ppb equivalent)             | 1!         |
| Range         | ppm NO limit of performance warranty                | 20         |
| Linearity     | ppb error at full scale, linear at zero and 5ppm NO | < ±        |
| Overgas limit | maximum ppm for stable response to gas pulse        | 50         |

### \* Tested with Alphasense ISB low noise circuit

| LIFETIME | Zero drift        | ppb equivalent change/year in lab air                 | 0 to 50  |
|----------|-------------------|-------------------------------------------------------|----------|
|          | Sensitivity drift | % change/year in lab air, monthly test                | 0 to -20 |
|          | Operating life    | months until 50% original signal (24 month warranted) | > 24     |

## **ENVIRONMENTAL**

| Sensitivity @ -20°C | (% output @ -20°C/output @ 20°C) @ 2ppm NO | 60 to 9(   |
|---------------------|--------------------------------------------|------------|
| Sensitivity @ 40°C  | (% output @ 50°C/output @ 20°C) @ 2ppm NO  | 97 to 11(  |
| Zero @ -20°C        | nA                                         | 0 to 30    |
| Zero @ 40°C         | nA                                         | 100 to 200 |

## **CROSS SENSITIVITY**

| H <sub>2</sub> S sensitivity | % measured gas | @ | 5ppm   | H <sub>2</sub> S (after 3 minutes) | < 10  |
|------------------------------|----------------|---|--------|------------------------------------|-------|
| NO <sub>2</sub> sensitivity  | % measured gas | @ | 5ppm   | NO <sub>2</sub> (after 3 minutes)  | < 4   |
| Cl <sub>2</sub> sensitivity  | % measured gas | @ | 5ppm   | Cl <sub>2</sub>                    | < (   |
| SŌ <sub>2</sub> sensitivity  | % measured gas | @ | 5ppm   | SŌ <sub>2</sub>                    | < !   |
| H <sub>2</sub> sensitivity   | % measured gas | @ | 100ppm | $H_2^{-}$                          | < 0.  |
| CO sensitivity               | % measured gas | @ | 5ppm   | CO                                 | < 0.0 |
| NH <sub>3</sub> sensitivity  | % measured gas | @ | 5ppm   | NH <sub>3</sub>                    | < 0.  |
| CO <sub>2</sub> sensitivity  | % measured gas | @ | 5% Vol | $CO_2$                             | < 0.  |
| O <sub>3</sub> sensitivity   | % measured gas | @ | 100ppb | $O_3$                              | < 4   |
| Halothane sensitivit         | У              | @ | 100ppm | Halothane                          | < 0.  |

### **KEY SPECIFICATIONS**

| Bias voltage      | mV (working electrode potential is above reference electrode) | +20(      |
|-------------------|---------------------------------------------------------------|-----------|
| Temperature range | °C                                                            | -30 to 40 |
| Pressure range    | kPa                                                           | 80 to 120 |
| Humidity range    | % rh continuous                                               | 15 to 8   |
| Storage period    | months @ 3 to 20°C (stored in sealed pot)                     | (         |
| Load resistor     | $\Omega$ (ISB circuit is recommended)                         | 33 to 10( |
| Weight            | g                                                             | < 10      |



At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, th information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their ow requirements





# **NO-B4 Performance Data**

Figure 2 Sensitivity Temperature Dependence

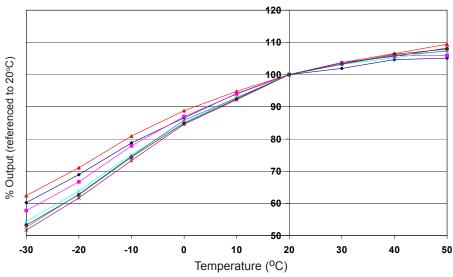



Figure 2 shows the temperature dependence o sensitivity at 2ppm NO.

This data is taken from a typical batch of sensors.

Figure 3 Zero Temperature Dependence

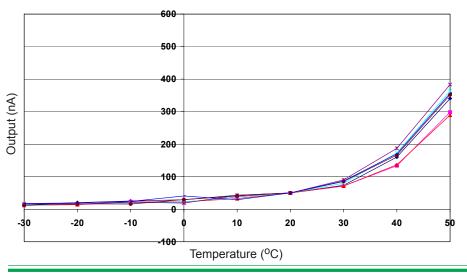



Figure 3 shows the variatior in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futher information on zero current correction.

Figure 4 Response to 200ppb NO

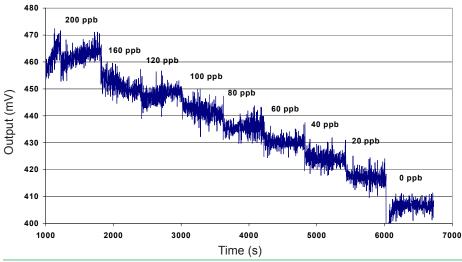
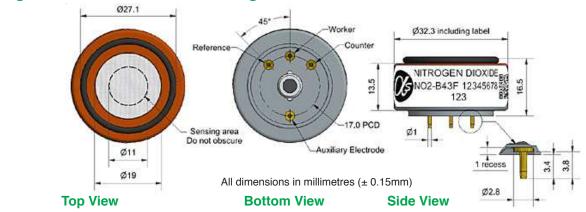



Figure 4 shows response to 200ppb NO.

Use of Alphasense ISB circu reduces noise to 15ppb with the opportunity of digital smooting to reduce noise even further

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".






# NO2-B43F Nitrogen Dioxide Sensor 4-Electrode



## Figure 1 NO2-B43F Schematic Diagram



| PEF | RFO | RM | AN | CE |
|-----|-----|----|----|----|
|-----|-----|----|----|----|

| Sensitivity   | nA/ppm at 2ppm NO <sub>2</sub>                                   | -175 to -45( |
|---------------|------------------------------------------------------------------|--------------|
| Response time | t <sub>90</sub> (s) from zero to 2ppm NO <sub>2</sub>            | < 60         |
| Zero current  | nA in zero air at 20°C                                           | -50 to +7(   |
| Noise*        | ±2 standard deviations (ppb equivalent)                          | 1!           |
| Range         | ppm NO <sub>2</sub> limit of performance warranty                | 20           |
| Linearity     | ppb error at full scale, linear at zero and 5ppm NO <sub>2</sub> | < ±0.        |
| Overgas limit | maximum ppm for stable response to gas pulse                     | 50           |
|               |                                                                  |              |

### \* Tested with Alphasense ISB low noise circuit

| LIFETIME | Zero drift        | ppb equivalent change/year in lab air                 | 0 to 20    |
|----------|-------------------|-------------------------------------------------------|------------|
|          | Sensitivity drift | % change/year in lab air, monthly test                | -20 to -4( |
|          | Operating life    | months until 50% original signal (24 month warranted) | > 24       |

### **ENVIRONMENTAL**

| Sensitivity @ -20°C | (% output @ | -20°C/output | @ 20°C) @ | 2ppiii NO <sub>2</sub> | 00 10 81  |
|---------------------|-------------|--------------|-----------|------------------------|-----------|
| Sensitivity @ 40°C  | (% output @ | 40°C/output  | @ 20°C) @ | 2ppm NO <sub>2</sub>   | 95 to 11! |
| Zero @ -20°C        | nA          |              |           | 2                      | 0 to 2!   |
| Zero @ 40°C         | nA          |              |           |                        | -10 to 5( |

| CROSS       | O <sub>3</sub>  |              | city (ppm.hr)  |   | 2ppm   | O <sub>3</sub>   | > 500 |
|-------------|-----------------|--------------|----------------|---|--------|------------------|-------|
| SENSITIVITY | H₂S             | sensitivity  | % measured gas | @ | 5ppm   | H <sub>2</sub> S | < -80 |
|             | NÖ              | sensitivity  | % measured gas | @ | 5ppm   | NO               | </th  |
|             | Cl <sub>2</sub> | sensitivity  | % measured gas | @ | 5ppm   | Cl <sub>2</sub>  | < 80  |
|             | SŌ,             | sensitivity  | % measured gas | @ | 5ppm   | SŌ,              | < !   |
|             | CO              | sensitivity  | % measured gas | @ | 5ppm   | CO               | <:    |
|             | $H_2$           | sensitivity  | % measured gas | @ | 100ppm | $H_{2}$          | < 0.  |
|             | $C_2H_4$        | sensitivity  | % measured gas | @ | 100ppm | $C_2H_4$         | < 0.4 |
|             | $NH_3$          | sensitivity  | % measured gas | @ | 20ppm  | NH <sub>3</sub>  | < 0.2 |
|             | $CO_2$          | sensitivity  | % measured gas | @ | 5% Vol | CO <sub>2</sub>  | < 0.  |
|             | Halothane       | esensitivity | % measured gas | @ | 100ppm | Halothane        | nc    |

### **KEY SPECIFICATIONS**

| Temperature range | °C                                        | -30 to 40 |
|-------------------|-------------------------------------------|-----------|
| Pressure range    | kPa                                       | 80 to 120 |
| Humidity range    | % rh continuous                           | 15 to 8   |
| Storage period    | months @ 3 to 20°C (stored in sealed pot) | (         |
| Load resistor     | $\Omega$ (ISB circuit is recommended)     | 33 to 10( |
| Weight            | g                                         | < 1(      |



At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements



echnical

# **NO2-B43F Performance Data**

## Figure 2 Sensitivity Temperature Dependence

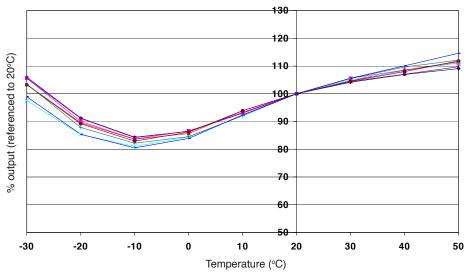



Figure 2 shows the temperature dependence c sensitivity at 2ppm  $NO_2$ .

This data is taken from a typical batch of sensors.

## Figure 3 Zero Temperature Dependence

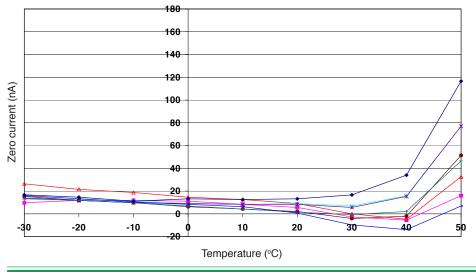
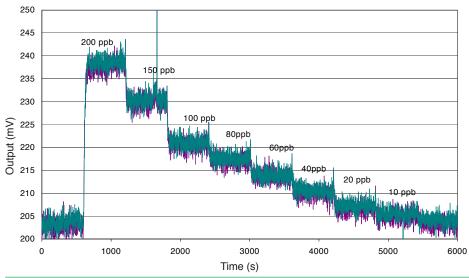




Figure 3 shows the variation in zero output of the working electrode caused by change in temperature, expressed a nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futhe information on zero currer correction.

## Figure 4 Response to 200 ppb NO<sub>2</sub>



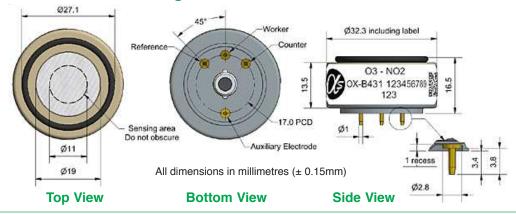
With a 33  $\Omega$  load resistor, the NO2-B43F shows exceller resolution, even at the ppl level: ideal for outdoor ai environmental testing.

Use of Alphasense ISB circu reduces noise to 15ppb, with the opportunity of digital smooting to reduce noise even further.

Offset voltage is due to intentional ISB circui electronic offset.

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".




**Technical** 

# OX-B431 Oxidising Gas Sensor Ozone + Nitrogen Dioxide 4-Electrode



## Figure 1 OX-B431 Schematic Diagram

Patented



## Specification O<sub>3</sub> Sensing

## **PERFORMANCE**

| Sensitivity nA/ppm at 1ppm O <sub>3</sub>                                  | -225 to -65( |
|----------------------------------------------------------------------------|--------------|
| Response time t <sub>90</sub> (s) from zero to 1ppm O <sub>3</sub>         | < 4!         |
| Zero current nA in zero air at 20°C                                        | -50 to 7(    |
| Noise* ±2 standard deviations (ppb equivalent)                             | 15           |
| Range ppm O <sub>3</sub> limit of performance warranty                     | 20           |
| Linearity ppm error at full scale, linear at zero and 20ppm O <sub>3</sub> | <.te> <.te>  |
| Overgas limit maximum ppm for stable response to gas pulse                 | 5(           |

## \* Tested with Alphasense AFE low noise circuit

| LIFETIME | Zero drift        | ppb equivalent change/year in lab air                 | 0 to 20      |
|----------|-------------------|-------------------------------------------------------|--------------|
|          | Sensitivity drift | % change/year in lab air, monthly test                | < -20 to -4( |
|          | Operating life    | months until 50% original signal (24 month warranted) | > 24         |

## **ENVIRONMENTAL**

| Sensitivity @ -20°C | (% output @ | -20°C/output @ 20°C) @ 2ppm O <sub>3</sub> | 70 to 90  |
|---------------------|-------------|--------------------------------------------|-----------|
| Sensitivity @ 40°C  | (% output @ | 40°C/output @ 20°C) @ 2ppm O <sub>3</sub>  | 95 to 125 |
| Zero @ -20°C        | nA          | Ü                                          | 0 to 25   |
| Zero @ 40°C         | nA          |                                            | 5 to 10(  |
|                     |             |                                            |           |

| CROSS       | H <sub>2</sub> S | sensitivity % measured gas | @ | 5ppm   | H <sub>2</sub> S | < 170 |
|-------------|------------------|----------------------------|---|--------|------------------|-------|
| SENSITIVITY | NÔ               | sensitivity % measured gas | @ | 5ppm   | NÔ               | < !   |
|             |                  | sensitivity % measured gas | @ | 5ppm   | Cl <sub>2</sub>  | < 90  |
|             | SŌ,              | sensitivity % measured gas | @ | 5ppm   | SŌ。              | <-7   |
|             | CO               | sensitivity % measured gas | @ | 5ppm   | CO               | < 0.1 |
|             | $C_2H_4$         | sensitivity % measured gas | @ | 100ppm | $C_{9}H_{4}$     | < 0.1 |
|             | NH <sub>3</sub>  | sensitivity % measured gas | @ | 20ppm  | NH <sub>3</sub>  | < 0.1 |
|             | H <sub>2</sub>   | sensitivity % measured gas | @ | 100ppm | H <sub>a</sub> o | < 0.1 |
|             | CO2              | sensitivity % measured gas | @ | 5% Vol | CÔ2              | 0.1   |
|             | Halothane        | sensitivity % measured gas | @ | 100ppm | Halothane        | < 0.1 |

## **KEY SPECIFICATIONS**

| 2/11/0110         |                                           |           |
|-------------------|-------------------------------------------|-----------|
| Temperature range | °C                                        | -30 to 40 |
| Pressure range    | kPa                                       | 80 to 120 |
| Humidity range    | % rh continuous                           | 15 to 85  |
| Storage period    | months @ 3 to 20°C (stored in sealed pot) | (         |
| Load resistor     | $\Omega$ (AFE circuit recommended)        | 33 to 10( |
| Weight            | g                                         | < 6       |
|                   |                                           |           |

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, th information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements





## **OX-B431 Performance Data**

## Figure 2 Sensitivity temperature dependence to 1ppm 0<sub>3</sub>

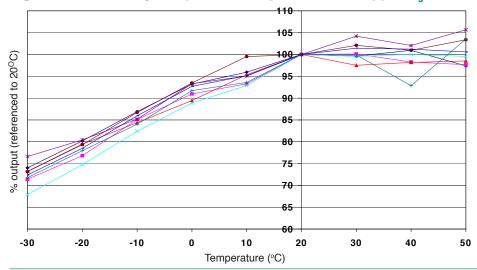



Figure 2 shows the temperature dependence of sensitivity at 1 ppm  $O_3$ .

This data is taken from a typical batch of sensors.

## Figure 3 Zero temperature dependence

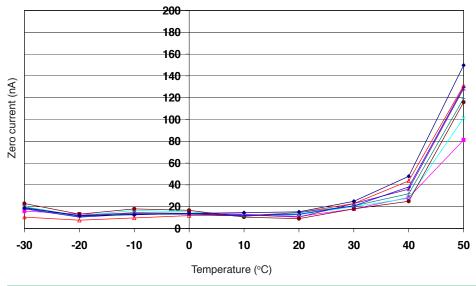



Figure 3 shows the variation in zero output of the working electrode caused by change in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futhe information on zero curren correction.

## Figure 4 Response from 200 ppb to 0 ppb O,

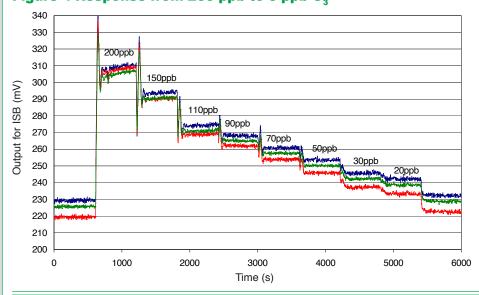



Figure 4 shows response fron 200ppb  $O_3$  to 0ppb  $O_3$ .

Use of Alphasense AFE circuireduces noise to 15ppb, with the opportunity of digita smooting to reduce noise ever further.

Offset voltage is due to intentional ISB circui electronic offset.



echnical

# OX-B431 Oxidising Gas Sensor Ozone + Nitrogen Dioxide 4-Electrode



Patented

70 to 9

The OX-B431 detects both ozone and nitrogen dioxide ( $O_3 + NO_2$ ). The NO2-B43F measures onl nitrogen dioxide, filtering out ozone. Using these sensors together allows you to calculate the C concentration by subtracting the corrected NO2-B43F concentration from the corrected OX-B43 concentration.

Before subtracting to determine ozone concentration, ensure that the signals from the two sensor have been corrected for electronic zero offset, sensor zero offset and temperature dependence, an sensitivity (nA/ppm) calibration and temperature dependence.

## Specification NO<sub>2</sub> Sensing

| PERF | ORM | ANCE |
|------|-----|------|
|------|-----|------|

| Sensitivity to NO <sub>2</sub> | nA/ppm at 2ppm NO <sub>2</sub>                                    | -250 to -65 |
|--------------------------------|-------------------------------------------------------------------|-------------|
| Response time                  | t <sub>90</sub> (s) from zero to 2ppm NO <sub>2</sub>             | < 3         |
| Zero current                   | nA in zero air at 20°C                                            | -50 to +7   |
| Noise*                         | ±2 standard deviations (ppb equivalent)                           | 1           |
| Range                          | ppm NO <sub>2</sub> limit of performance warranty                 | 2           |
| Linearity                      | ppm error at full scale, linear at zero and 20ppm NO <sub>2</sub> | $<\pm0$ .   |
| Overgas limit                  | maximum ppm for stable response to gas pulse                      | 5           |
|                                |                                                                   |             |

#### \* Tested with Alphasense AFE low noise circuit

| LIFETIME | Zero drift        | ppb equivalent change/year in lab air                 | 0 to 2     |
|----------|-------------------|-------------------------------------------------------|------------|
|          | Sensitivity drift | % change/year in lab air, monthly test                | <-20 to -4 |
|          | Operating life    | months until 50% original signal (24 month warranted) | > 2        |

Sensitivity @ -20°C (% output @ -20°C/output @ 20°C) @ 2ppm NO

### **ENVIRONMENTAL**

|             | Sensitivity @ 40°C<br>Zero @ -20°C<br>Zero @ 40°C | (% output @ 50°C/output @ 20°C) @ 2ppm NO <sub>2</sub><br>nA<br>nA |   |      | 95 to 11<br>0 to 2<br>5 to 5 |     |
|-------------|---------------------------------------------------|--------------------------------------------------------------------|---|------|------------------------------|-----|
| CROSS       | $H_2S$                                            | sensitivity % measured gas                                         |   | 5ppm | H <sub>2</sub> S             | <17 |
| SENSITIVITY | NO                                                | sensitivity % measured gas                                         | @ | 5ppm | NO                           | <   |
|             |                                                   | sensitivity % measured gas                                         | @ | 5ppm | Cl <sub>2</sub>              | < 9 |
|             | SO <sub>2</sub>                                   | sensitivity % measured gas                                         | @ | 5ppm | SO <sub>2</sub>              | <.  |
|             |                                                   |                                                                    |   |      |                              |     |

| 2                                | , ,                        |   |        | 2            |      |
|----------------------------------|----------------------------|---|--------|--------------|------|
| CO                               | sensitivity % measured gas | @ | 5ppm   | CO           | < 0. |
| $C_{\mathfrak{p}}H_{\mathtt{A}}$ | sensitivity % measured gas | @ | 100ppm | $C_2H_4$     | < 0. |
| NH <sub>3</sub>                  | sensitivity % measured gas | @ | 20ppm  | $N\bar{H}_3$ | < 0. |
| H <sub>2</sub>                   | sensitivity % measured gas | @ | 100ppm | $H_{s}$      | < 0. |
| CŌ <sub>2</sub>                  | sensitivity % measured gas | @ | 5% Vol | $CO_2$       | 0.   |
| Halothane                        | sensitivity % measured gas | @ | 100ppm | Halothane    | < 0. |

### **KEY SPECIFICATIONS**

| Temperature range | °C              | -30 to 4 |
|-------------------|-----------------|----------|
| Pressure range    | kPa             | 80 to 12 |
| Humidity range    | % rh continuous | 15 to 8  |



At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact trinstrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitat for their own requirements.





# **OX-B431 Performance Data**

## Figure 5 Sensitivity temperature dependence to 2ppm NO,

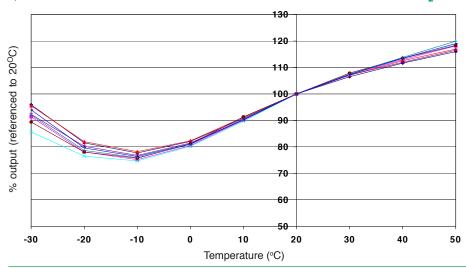



Figure 5 shows th temperature dependence c sensitivity at 2ppm NO<sub>2</sub>.

This data is taken from typical batch of sensors.

## Figure 6 Response to 50ppb NO.

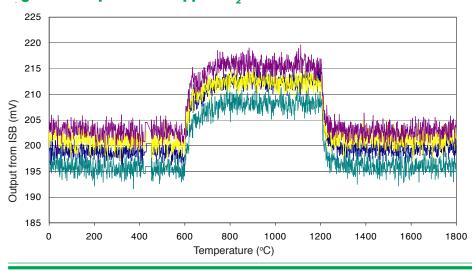



Figure 6 shows the fast response and good baselin recovery of the OX-B431 t 50ppb NO<sub>2</sub>.

## Figure 7 Response from 200 ppb to 0 ppb NO,

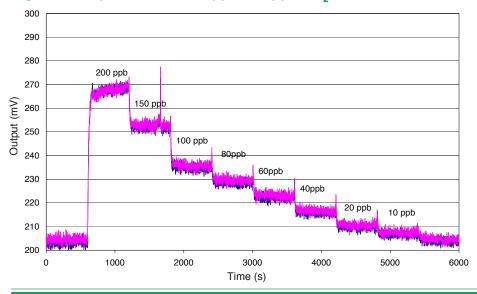



Figure 7 shows response from 200ppb NO<sub>2</sub> to 0ppb NO<sub>2</sub>.

Use of Alphasense AFE circureduces noise to 15ppb, with the opportunity of digital smooting to reduce noise to less than ± 5ppb.

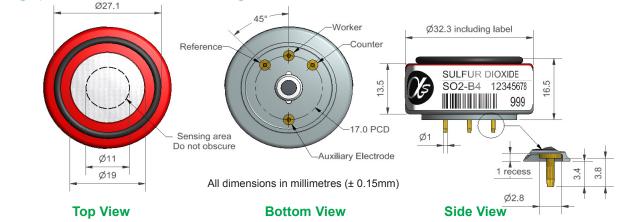
Offset voltage is due t intentional ISB circu electronic offset.

For further information on the performance of this sensor, on other sensors in the range or any other subject, pleas contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this docum






# SO2-B4 Sulfur Dioxide Sensor 4-Electrode



< 1:

## Figure 1 SO2-B4 Schematic Diagram

Weight



| -                     |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| PERFORMANCE           | Sensitivity Response time Zero current Noise* Range Linearity Overgas limit * Tested with Alphase                                                                                                                                                               | nA/ppm at 2ppm SO <sub>2</sub> t <sub>90</sub> (s) from zero to 2ppm SO <sub>2</sub> nA in zero air at 20°C ±2 standard deviations (ppb equivalent) ppm limit of performance warranty ppb error at 100ppm SO <sub>2</sub> , linear at zero and 10ppm SO <sub>2</sub> maximum ppm for stable response to gas pulse ense ISB low noise circuit         | 275 to 47:<br>< 3:<br>-80 to +8:<br>10:<br>0 to -:<br>20:          |
| LIFETIME              | Zero drift<br>Sensitivity drift<br>Operating life                                                                                                                                                                                                               | ppb equivalent change/year in lab air % change/year in lab air, monthly test months until 50% original signal (24 month warranted)                                                                                                                                                                                                                   | < ±20<br>< ±10<br>> 30                                             |
| ENVIRONMENTAL         | Sensitivity @ -20°C<br>Sensitivity @ 50°C<br>Zero @ -20°C<br>Zero @ 50°C                                                                                                                                                                                        | (% output @ -20°C/output @ 20°C) @ 2ppm SO <sub>2</sub><br>(% output @ 50°C/output @ 20°C) @ 2ppm SO <sub>2</sub><br>nA change from 20°C<br>nA change from 20°C                                                                                                                                                                                      | 70 to 8:<br>95 to 11:<br>0 to -1:<br>10 to 3:                      |
| CROSS<br>SENSITIVITY  | Filter capacity H <sub>2</sub> S sensitivity NO <sub>2</sub> sensitivity Cl <sub>2</sub> sensitivity NO sensitivity CO sensitivity H <sub>2</sub> sensitivity C <sub>2</sub> H <sub>4</sub> sensitivity NH <sub>3</sub> sensitivity CO <sub>2</sub> sensitivity | ppm·hrs % measured gas @ 5ppm H <sub>2</sub> S % measured gas @ 5ppm NO <sub>2</sub> % measured gas @ 5ppm CI <sub>2</sub> % measured gas @ 5ppm NO % measured gas @ 5ppm CO % measured gas @ 100ppm H <sub>2</sub> % measured gas @ 100ppm C <sub>2</sub> H <sub>4</sub> % measured gas @ 20ppm NH <sub>3</sub> % measured gas @ 5% CO <sub>2</sub> | 450<br>< -160<br>< -40<br>< -3<br>< 0.4<br>< 0.5<br>< 0.5<br>< 0.5 |
| KEY<br>SPECIFICATIONS | Temperature range<br>Pressure range<br>Humidity range<br>Storage period<br>Load Resistor                                                                                                                                                                        | °C<br>kPa<br>% rh continuous (see note below)<br>months @ 3 to 20°C (stored in sealed pot)<br>Ω (ISB circuit is recommended)                                                                                                                                                                                                                         | -30 to 50<br>80 to 120<br>15 to 90<br>0<br>33 to 100               |

Note: Above 85% rh and 40°C a maximum continuous exposure period of 10 days is warranted. Where such exposure occurs the sensor will recover normal electrolyte volumes when allowed to rest at lower % rh and temperature levels for several days.

g

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact th instrument manufacturer, Alphasense or its distributor for disposal instructions.

**NOTE:** all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, th information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements



**Technical** 

# **SO2-B4 Perfomance Data**

## Figure 2 Sensitivity Temperature Dependence

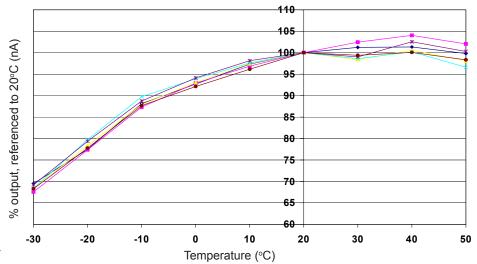



Figure 2 shows the temperature dependence of sensitivity at 2ppm SO<sub>2</sub>.

This data is taken from a typical batch of sensors.

## Figure 3 Zero Temperature Dependence

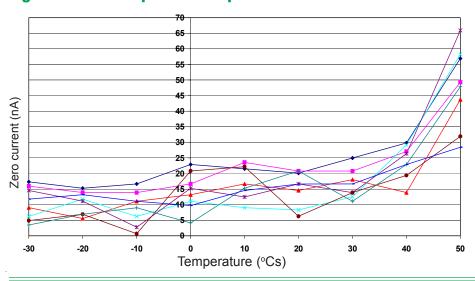



Figure 3 shows the variation in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futhe information on zero curren correction.

## Figure 4 Response to 200ppb SO<sub>2</sub>

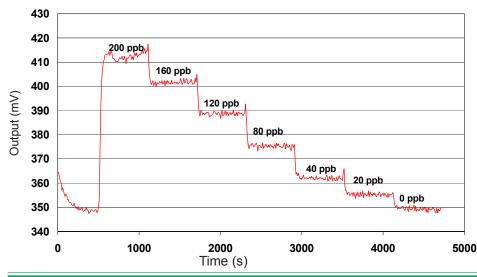



Figure 4 shows response fror 20 to 200ppb  $SO_2$ .

Use of Alphasense ISB circuireduces noise to 5ppb, with the opportunity of digital smooting to reduce noise even further.

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in the document is for auidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information.